

ELM Detection and Correlation with Rotating MHD Modes for Disruption Event Characterization and Forecasting

Jalal Butt^{1*}, S.A. Sabbagh¹, Y.-S. Park¹, J.W. Berkery¹, V. Klevarova¹, Y. Jiang¹, J.D. Riquezes¹

¹Department of Applied Physics, Columbia University, New York, NY, USA

Outline

- Motivation & objective
- Role of ELM detection in DECAF
- ELM detection algorithm
- ELM detection case-studies
- Summary, active and future work

ELMs can potentially trigger or seed disruption-capable modes

- The Disruption Event Characterization and Forecasting (DECAF) code works to resolve, characterize, forecast, and glean physics insight to event-chains that result in disruptions by studying large, cross-machine databases^[1]
 - a favorable formalism to study possible seeding of detrimental instabilities
- Not typically directly disruptive, but ELMs have long been thought to be a potential trigger for more detrimental plasma instabilities^[2,3]
- Recent progress in theory proposes possible mechanism for ELM triggering of NTMs^[2,5]
- The potential of ELMs to seed modes that can result in plasma termination interests DECAF in a high-fidelity ELM-detection capability
 - gives rise to DECAF ability to study correlation of ELMs with disruptive plasma events

Goal: Reliably detect and characterize ELMs in DECAF

- Reliable ELM detection and characterization requires distinguishing between events that may share diagnostic signal characteristics
 - □ A high time-resolution diagnostic to detect edge energy transients is the D_{α} diagnostic
 - □ E(dge)LM: loss of *pedestal* energy → Expect ELMs to exhibit edgelocalized profile drops following ELM crash
 - Strong D_α emission transients w/out edge-localized profile changes through mode dynamics still useful – info passed to other DECAF events (NTM, LTM, RWM, etc.)

ELM Identification Algorithm

ELM Identification Results

- Demonstrate ELM identification capability and characteristics by examining performance on several shots
 - 2 NSTX discharges with bona fide ELMs^[3]
 - **2** NSTX discharges with D_{α} emission signatures similar to that of ELMs
 - A representative KSTAR shot
- Examine plasma diagnostic signals through mode dynamics to determine physical nature of strong D_α emission transient (if not ELM, what is source of the emission?)
 - **D**_α
 - Slow neutrons
 - Magnetic pick-up coils
 - T_e profile
 - RWM and locked mode sensors
 - Plasma stored energy (W_{tot})

DECAF ELM detection capability classifies D_{α} spikes as global or edge-local based on plasma signals

- Transient low-f magnetics
- Edge-localized T_e drop
- No apparent ΔB_r or ΔB_p
- · → ELM

2

КЭТА

KSTAR

DECAF ELM detector computes D_{α} spike start- and end- times

11

1/3

K§TAR

2/3

DECAF ELM detector discerns difference b/w global and edge-localized effects, and can provide D_{α} processing to other DECAF events 3/3

• → Probable LTM

Narrow-peaked, quasi-periodic D_{α} measurements may appear to be ELMs but DECAF detects global plasma profile changes

1/3

DECAF ELM detector filters out events not supported by edgelocalized plasma signals despite ELM-characteristic D_{α} ^{2/3}

K STAP

DECAF ELM detector filters out events not supported by edgelocalized plasma signals despite ELM-characteristic D_{α}

Narrow-peaked, semi-regular D_{α} emission transients *look* 1/4 like ELMing, but DECAF ELM detector claims otherwise

T_e profile provides critical support to ELM-detection by filtering events w/ D_{α} spike-ing but no edge-localized profile change ^{2/4}

T_e profile provides critical support to ELM-detection by filtering events w/ D_{α} spike-ing but no edge-localized profile change ^{3/4}

T_e profile provides critical support to ELM-detection by filtering events w/ D_{α} spike-ing but no edge-localized profile change $^{4/4}$

K**S**TAR

ELM Detection and Correlation with Rotating MHD modes for DECAF: J. Butt, S.A. Sabbagh (Columbia U.), et al. (07/21/21)

DECAF ELM detection capability is machine-general

Summary, Active and Future Development

Summary

- Results from DECAF's ELM event demonstrates its ability to reliably detect ELMs with D_α, T_e, and slow neutrons as inputs
 - DECAF has access to many machines ELM-event can be generally applied (e.g. KSTAR)
- Supports other DECAF events with D_{α} emission transient processing

Active work

Studying extent of correlation of ELMs with rotating MHD modes

 Recent theory predicts MHD transients (e.g. ELMs) can abruptly induce E_r, radially-localized torque, and flows that reduce transient magnetic perturbation frequency → can allow metastable NTM to grow (as req'd by MRE)

 $_{\rm Figure 4:}$ 174446 long time evolution; NTM grows robustly after ELM at 3396 ms.

J.D. Callen et al, "How are NTMs seeded", APS-DPP BP10.00028 (2019)

Acknowledgements

KSTAR

This work was supported by US DoE grant DE-SC0016614.

References

- 1. S.A. Sabbagh, J.W. Berkery, Y.S. Park, et al., "Disruption Event Characterization and Forecasting in Tokamaks", IAEA Fusion Energy Conference 2019 paper EX/P6-26.
- 2. J.D. Callen, R.J. La Haye, R.S. Wilcox, E.J. Strait, et al, "How are NTMs Seeded", APS-DPP Conference, BP10.00028 (2019)
- 3. D. Smith, R.J. Fonck, et al "Evolution patterns and parameter regimes in edge localized modes on the National Spherical Torus Experiment", Plasma Physics and Controlled Fusion **58**, 045003 (2016)
- 4. A. Leonard "Edge-localized modes in tokamaks", Physics of Plasmas **21**, 090501 (2014)
- 5. M. Beidler, J.D. Callen, C.C. Hegna, C.R. Sovinec, "Mode penetration induced by transient magnetic perturbations", Phys Plasmas **25**, 082507 (2018)